Predictive active set selection methods for Gaussian processes
نویسندگان
چکیده
منابع مشابه
Predictive active set selection methods for Gaussian processes
We propose an active set selection framework for Gaussian process classification for cases when the dataset is large enough to render its inference prohibitive. Our scheme consists of a two step alternating procedure of active set update rules and hyperparameter optimization based upon marginal likelihood maximization. The active set update rules rely on the ability of the predictive distributi...
متن کاملConstant-Time Predictive Distributions for Gaussian Processes
One of the most compelling features of Gaussian process (GP) regression is its ability to provide well calibrated posterior distributions. Recent advances in inducing point methods have drastically sped up marginal likelihood and posterior mean computations, leaving posterior covariance estimation and sampling as the remaining computational bottlenecks. In this paper we address this shortcoming...
متن کاملThe Rate of Entropy for Gaussian Processes
In this paper, we show that in order to obtain the Tsallis entropy rate for stochastic processes, we can use the limit of conditional entropy, as it was done for the case of Shannon and Renyi entropy rates. Using that we can obtain Tsallis entropy rate for stationary Gaussian processes. Finally, we derive the relation between Renyi, Shannon and Tsallis entropy rates for stationary Gaussian proc...
متن کاملPredictive App roaches for Choosing Hyperparameters in Gaussian Processes
Gaussian processes are powerful regression models specified by parameterized mean and covariance functions. Standard approaches to choose these parameters (known by the name hyperparameters) are maximum likelihood and maximum a posteriori. In this article, we propose and investigate predictive approaches based on Geisser's predictive sample reuse (PSR) methodology and the related Stone's cross-...
متن کاملActive-Set Methods for Support Vector Machines
This chapter describes an active-set algorithm for the solution of quadratic programming problems in the context of Support Vector Machines (SVMs). Most of the common SVM optimizers implement working-set algorithms like the SMO method because of their ability to handle large data sets. Although they show generally good results, they may perform weakly in some situations, e.g., if the problem is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neurocomputing
سال: 2012
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2011.09.017